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This work presents a mathematical model for the compressive strength of a rigid rod 
polymer fibre based on an approach describing the fibre fibril as an end-loaded column on 
an elastic base. Also, it is suggested that the model of elastic stability of the coated fibre 
includes the influence of thermal stresses. A good agreement with experimental data is 
received. From this model one can propose that i f  an interfibrilar matrix material is 
incorporated in the fibre, at a small volume fraction of about a few per cent, this material may 
have a pronounced influence on the fibre's compressive strength. 

1. I n t r o d u c t i o n  

Fibres drawn from rigid rod polymers have extra- 
ordinary tensile properties, but their transverse and 
compressive behaviours are deficient. These fibres are 
inclined to buckle because of their relatively low trans- 
verse mechanical properties, caused by the presence of 
microvoids and their skin-core structure [1, 2]. Com- 
pressive failure is initiated by buckling at or just be- 
neath the fibre surface [3]. Many efforts have been 
made to improve the compressive properties of rigid 
rod polymer fibres, such as, the introduction of chem- 
ical crosslinking transverse to the fibre axis [4], coat- 
ing the fibre surface with a thin layer of a high 
modulus material [3, 5], infiltration of a high modulus 
filling material (e.g. glass [6]) into the surface or bulk 
of the fibre. A preferred method for improving the 
fibre's compressive strength is absent as yet, but it is 
possible to consider that the main idea of most 
methods is to change the instability mechanism from 
buckling to bending and failure of an orthotropic 
body. 

2 .  T h e o r e t i c a l  c o n s i d e r a t i o n s  

A common approach in the description of a rigid rod 
polymer fibre is as a microcomposite, in which the 
inner structure of the fibre is described as a collection 
of laterally interacting extended units (either chains or 
microfibrils). It may be possible that the interaction is 
mediated by an interfibrilar material. The axial com- 
pressive strength of these fibres is limited by elastic 
microbuckling instabilities and not by bending and 
material failure. The best estimate of the compressive 
strength, ~ r ,  is given by [7, 8] 

~ r  = G ( 1 )  

where G is the longitudinal shear modulus of the 
anisotropic fibre. Experiments show that the predic- 
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tions of Equation 1 are overestimated [9]. For rigid 
polymer fibres DeTeresa et al. [9] suggested an em- 
pirical correction to Equation 1 so that 

s ~- 0.3 G (la) 

The authors propose to describe the behavior of a 
fibril in a fibre under compressive loading as an end- 
loaded column on an elastic base. The elastic base 
represents the field around the fibril under considera- 
tion, which can be either the effective field of the 
surrounding fibrils or the interfibrilar material if it 
exists. This approach implies the following boundary 
conditions: pinned column ends; Hookean elastic be- 
haviour; colinearity of the load and the fibril axis; no 
crushing or yielding of the column ends; good contact 
(no slip) between the fibril and the elastic base. Given 
all of these conditions, the buckling load, Per, is [10] 

P c r  = 2(IEmEf) 1/2 (2) 

where Ef is the tensile elastic modulus of the fibril, 
taken to be equivalent to the fibre modulus [9]; E m is 
Young's modulus of the elastic base; I is the moment 
of inertia of the fibril cross-section. From Equation 2, 
the compressive strength is given by 

(Ycr = (EfEm/7~) I/2 (3) 

The transversal Young's modulus of the fibre, ET, can 
be given by [11] 

1 vf 1 - vf 
- + - -  (4) 

ET Ef Em 

where vf is the volume fraction of fibrils in the fibre, so 
that E m is given by 

ETEf(1 - vf) 
E m  = ( 5 )  

E f  - -  v f  E T  
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Equations 1 and 3 show that increasing G and 
Em increases the ultimate compressive strength of the 
fibre. 

Of the methods presented in an attempt to improve 
the compressive strength of rigid polymer fibres, now 
consider the following: coating the fibre surface with 
a thin layer of a high modulus material and infiltration 
of a high modulus filling material into the surface or 
whole volume of the fibre. These methods may pro- 
duce a pronounced skin-core structure in the fibre. 
Coating shells or fibre skin-core structures may pos- 
sess a great difference in the thermal expansion coeffi- 
cients. It requires one to take into account the 
influence of the residual thermal stresses on the com- 
pressive stability of the fibres. 

A model is suggested based on the stability model of 
cylindrical shells [10]. This model applies both to the 
case of a fibre coated with a high modulus material as 
well as to the case of an uncoated fibre with a pro- 
nounced skin-core structure. This approach implies 
the following assumptions and boundary conditions: 
a thin shell; the axial stress is uniformly distributed in 
fibre cross-section; the fibre ends are pinned; there are 
no temperature gradients; good contact (no slip) 
between the core and shell. The initial differential 
equation is [10] 

D 2 2 2 2 Esh04W 02w ~-v V V V w + R--iOx- ~ + crxVEV20x 2 

2 2 02W 
~- cryV V ~ ~- V2V2w = 0 (6) 

where w is the bending displacement; x, y are the 
co-ordinate axes along the fibre and radial direc- 
tions, respectively; crx, cry the components of the 
compressive stress; V 2 the Laplace operator; D the 
flexural rigidity of the fibre; Esh the skin (shell) elastic 
modulus; h the thickness of the skin (shell); R the fibre 
(core) radius; E{ the fibre (core) transversal elastic 
modulus. In this model E~ = ET. 

E ~ - A ~ A T R  2 
cry - h8 (7) 
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Figure 1 The critical stress for fibre buckling, as calculated numer- 
ically by Equations 6-12. 

Inserting Equation 9 into Equation 6 yields 

1 (1 -t- 02) 2 02 1 

cr* = 12(1 - I x 2 )  02 q + 1 + 02q 

a)AT* co 
+ - -  (10) ~0 2 qO 2 

where 

cr. _ crx R m n R  2 h 
E~hh; 0 - n L; q = n-~;  

h 
E~ R (11) AT* = AI3AT ; co - E~hh 

The critical stress which produces buckling of the 
fibre, crcrit, can be obtained from the condition 

Scr* 0cr~ 
- - 0 .  ( 1 2 )  

an  so  

The critical stress for fibre buckling, as calculated 
numerically by Equations 6-12, is presented in Fig. 1. 
It is easy to see that, under high temperatures, fibres 
with minimal A[3 and Efi/Esh are more stable against 
buckling. 

where 

E{R2(1  
8 -- 1 + E~h-hh" - Ix2) (8) 

where A[3 is the difference between coefficients of lin- 
ear thermal expansion of fibre (core) and shell (skin); 
AT the difference between the temperature in which 
the fibre was formed (or coated) and the temperature 
at which the fibre is used; tx the Poisson's coefficient. 

A particular solution of Equation 6, which agrees 
with the boundary conditions, is 

(9) 

where f is the amplitude of bend; m, n the number of 
half-waves along the fibre and tangential directions, 
respectively; L the length of the investigated fibre 
sample. 

3 .  C o m p a r i s o n  w i t h  e x p e r i m e n t s  

The theoretical predictions were compared with ex- 
perimental data for Kevlar fibres, as shown in Table I. 
In order for the compressive strength of the fibre to 
equal its tensile strength (3.2 G P a  for Kevlar 49 [2]), it 
is necessary to achieve a shear modulus of interfibrilar 
material at values of 3 .2GPa  by Equation (1) or 
1 G P a  by Equation (la). On the other hand, with 
Equations 3-5, equality of fibre compressive and ten- 
sile strengths may be achieved at ET = l l . 8 G P a  
(using the data described in the second footnote to 
Table I). Interestingly, if the volume fraction of the 
interfibrilar material could be increased slightly by 
some method so that vf = 0.95, equality of the com- 
pressive and tensile strengths would be achieved, by 
Equation 3 at Er  = 5 GPa. These values, in the range 
of 1-5 GPa, correspond to the properties of common 
unorientated bulk polymers. 
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TABLE I Comparison of the predicted and measured axial com- 
pressive strength of Kevlar fibres 

Measured Prediction by Prediction by 
compressive Equation 1 a Equation 3 b 
strength (MPa) (MPa) (MPa) 
[-9] 

345 1500 780 

"The value of G was taken from reference [-9]. 
bUsing the values of: Ef = 124GPa [11; ET = 0.77 GPa [12]; 
vf = 0.98 estimated from the ratio of the theoretical and experi- 
mental densities of Kevlar fibres [2]. 

Now consider the experimental data for ceramic 
coated fibres from poly(p-phenylene benzobisoxazole) 
of McGarry  and Moalli [3, 5]. Comparison of the 
calculated results from the mathematical model pre- 
sented by Equations 6-12 and the experimental data 
[5] is shown in Fig. 2. In the calculations it was 
considered that kt = 0.1+0.3 [11] and AT ,,~ 0. Ex- 
perimental data were presented for two batches of 
fibres, yielding different values of the compressive 
strength as a function of coating thickness. A good 
approximation of the experimental data was achieved 
by the model using the following parameters: Ef i -- 0.7 
and Esh = 6.5 GPa  for one batch and E{ = 0.3 and 
Esh = 2.7 G P a  for the other. The values of the trans- 
verse moduli of the fibres are in good agreement with 
theoretical notions on orientated rigid polymer fibres 
[12, 13]. The values of the elastic moduli of the ce- 
ramic layers (2.7, 6.5 GPa) seem somewhat low in 
comparison with known moduli of in situ ceramics. 
This deviation can be explained by a smaller degree of 
densification achieved in the deposition process of the 
ceramic layer [14]. 

Inspection of Table I and Fig. 2 reveals a deviation 
between the approximated values of the calculated 
transverse moduli of the two fibre batches and be- 
tween these values and the reported data for aramid 
fibres [12]. The model was constructed with several 
simplifications and assumptions. Several effects were 
not taken into considerations: the anisotropy of mech- 
anical properties within the fibre; the structural in- 
homogenity, which may lead to initiation of local 
instabilities at compressive loads less than the pre- 
dicted value; the presence of voids in the fibre [1]; 
the distribution of molecular orientation, which may 
allow failure to initiate in the most poorly aligned 
regions. The proclaimed boundary conditions of the 
model also are idealized, and estimation of the fibril 
volume fraction is very approximate. However, one 
can confirm that the predicted and measured fibre 
compressive strengths are not extremely different. 

The model presented by Equations 6-12 can be 
used to predict the critical temperature difference for 
thermal buckling of coated fibre. For  example, for 
ceramic coated Kevlar fibre, A[3 ~ 6 x  10 .5 K -1. 
Using the following values: R/h = 3, Ef ~ = 0.5 GPa, 
Esh = 5 GPa,  it is obtained that thermal buckling will 
ensue when A T > 400 ~ However, even the simplest 
calculation of the tensile strength of the ceramic layer, 
~c, due to the mismatch of the thermal expansion 
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Figure 2 Comparison of the calculated results from the mathemat- 
ical model presented by Equations 6-12 and the experimental data 
[5]. 

coefficients yields 

~c = EshA~AT (13) 

Taking into consideration an ultimate value of ~o for 
the ceramic layer, ~ 0.5 GPa, failure of the ceramic 
coating must already occur at AT ~ 170~ This es- 
timation is in accord with experimental results [14], in 
which at A T  > 150~ thermal cracking of the fibre 
coating was observed. The helical shape of the cracks, 
suggests the mismatch of thermal expansion coeffi- 
cients of the polymer fibre and ceramic coating to be 
the reason for failure of the coating. From this one can 
infer that thermal buckling should only be more rel- 
evant in the case of a small difference between the 
thermal expansion coefficients of fibre and coating. 

4. Conclusions 
The present model can now be used to discuss some of 
the methods presented for enhancement of fibre com- 
pressive strength: coating the fibre and formation of 
an interfibrilar matrix. From the model one can pro- 
pose that if an interfibrilar matrix material can be 
incorporated into the fibre, at a small volume fraction 
of about a few per cent, it may have a pronounced 
influence on the fibre compressive strength. The inter- 
fibrilar matrix may be formed by infiltration of a 
matrix-forming material during the spinning process 
[15]. The matrix material may be either polymeric, 
such as an epoxy resin, or an inorganic glass-forming 
material. Alternatively, preliminary investigations 
suggest that swelling of fibres in a solvent under 
special conditions allows formation of an unorien- 
tated interfibrilar matrix of the same polymer of which 
the fibre is made [16]. The interfibrilar matrix, chem- 
ically identical to the fibrils, may have advantages 
with respect to adhesion, matching of thermal expan- 
sion and ability to undergo further thermal treat- 
ments. The present analysis indicates that if such 
a matrix is formed, optimal properties may be ob- 
tained with a minimal volume fraction of matrix. As 
for coating of the fibre, if the shell elastic modulus 
is close to that of the unorientated bulk polymer 
( ~ 5 G P a ) ,  increase of the fibre's compressive 
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strength will require the thickness of the shell to be 
equal to the fibre radius. 
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